
Nonrelativistic bound-state problems in momentum space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 2537

(http://iopscience.iop.org/0305-4470/19/13/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 2537-2547. Printed in Great Britain 

Non-relativistic bound-state problems in momentum space 

T W Chiu 
Physics Department, National Taiwan University, Taipei, Taiwan, Republic of China 

Received 24 October 1985 

Abstract. The non-relativistic bound-state problem is studied in momentum space with 
emphasis on the potentials which are divergent at large distances. The Schrodinger integral 
equation is solved by the collocation method. In contrast to the bound-state problem in 
coordinate space, solving this type of eigenproblem in momentum space does not yield 
the correct eigenvalues unless the ‘infrared’ divergent potential is regularised. A regularisa- 
tion method is introduced and illustrated with two examples, namely the simple harmonic 
oscillator and the linearly rising potential. Finally the quarkonium systems are studied 
with the regulated linear plus Coulomb potential. 

1. Introduction 

The bound-state problems in non-relativistic quantum mechanics are usually solved 
via the Schrodinger equation in coordinate space. Examples are the square well, simple 
harmonic oscillator and Coulomb potential. These have exact analytic solutions. Other 
potentials which do not have analytic solutions are often treated by the perturbation 
or semiclassical methods. Although the problems with a simple central potential can 
be handled most easily with a differential equation approach, many problems in 
many-body and high energy physics lead naturally to integral equations in momentum 
space which cannot be transformed into a simple equation in coordinate space. 
Examples are relativistic bound-state equations. To develop techniques for handling 
relativistic bound-state problems in momentum space, it is instructive to test them in 
the non-relativistic regime where most problems are well understood. This motivates 
our present study. 

In this paper, we solve the non-relativistic bound-state problems in momentum 
space, with emphasis on the potentials which are divergent at large distances (e.g., a 
linearly rising potential). In momentum space, the Schrodinger equation is an integral 
equation which can be solved numerically by the collocation method [l]. If we pick 
an ‘infrared’ divergent potential (e.g., the simple harmonic oscillator) and try to solve 
this problem by the collocation method, we find that the eigenvalues do not agree with 
those obtained via the Schrodinger differential equation. The discrepancy is due to the 
fact that the kernel is not square integrable. The kernel must be regularised before we 
can obtain the correct eigenvalues. At this point, let us discuss some salient features 
distinguishing the differential equations from the integral equations. Loosely speaking, 
a differential equation is ‘local’. It cannot conceive any information which is far away 
from the point of observation. Thus it cannot ‘see’ the ‘infrared’ divergence occurring 
at large distances. Furthermore boundary conditions have to be specified before the 
solutions can be obtained. We usually choose the boundary conditions such that the 
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wavefunctions are well behaved at the origin and at infinity. On the other hand, an 
integral equation is ‘global’; it incorporates all information from all points (including 
infinity) through the kernel. Thus the ‘infrared’ divergence at infinity affects 
every point of observation, then invalidates the collocation method. To overcome this 
difficulty, we regularise the ‘infrared’ divergent potential energy by levelling it off 
beyond a certain point (see figures 2 and 3). Doing this renders the kernel to be square 
integrable and yields the correct eigenvalues and eigenfunctions. 

In the next section, we formulate the bound-state problem in momentum space 
and review the basic ideas of the collocation method. Three examples are discussed, 
namely Coulomb, linear and harmonic oscillator. Although the Coulomb potential is 
not ‘infrared’ divergent, we include it here for the sake of completeness. In § 3, we 
employ the techniques developed in 5 2 to study the quarkonium system which is a 
bound state of a quark and an antiquark. It is well known that the quarkonium mass 
spectra can be fitted by many non-relativistic potential models [ 2 ] .  We use the Cornell 
potential (Coulomb + linear) and their parameters to fit charmonium (cE) and 
bottomium (b6). Our results are in good agreement with the Cornell results. 

2. Three examples 

In momentum space, the Schrodinger equation is 

where E is the energy eigenvalue and p is the mass of the particle. The wavefunction 
in coordinate space can be obtained by the Fourier transformation 

We perform the partial wave decomposition as follows: 

= C Ylm(P*) Y , m ( $ )  V~(P, 4 )  (4) 
1, m 

where x is the cosine of the angle between p  ̂ and 4, P, is the Legendre polynomial 
and Ylm is the spherical harmonic. 

Substituting (3) and (4) into (1) and integrating over the angular variables, we obtain 

where 
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Equation ( 5 )  is a linear integral equation which can be solved numerically by the 
collocation method. 

The essence of the collocation method is to discretise the momentum variables in 
( 5 ) .  This turns equation ( 5 )  into a set of simultaneous algebraic equations: 

where { p l  . , . pn}  is the set of discrete momentum mesh points, S i j  is the Kronecker 6 
function and Aj is the weight corresponding to dq in ( 5 ) .  The eigenproblem of equation 
(7 )  can be solved numerically. 

2.1. Coulomb potential ( V  = - a / r )  

In momentum space, the potential kernel is 

If we substitute (8) into (6), the integration can be evaluated analytically to yield 

where Ql is the Legendre polynomial of the second kind. However, (9) is not suitable 
for the collocation method due to the singularity of Ql at p = q. To avoid this singularity, 
we shall integrate equation (6) numerically by Gaussian integration. Notice that such 
a singularity would be absent in the case of a Yukawa potential ( V  = - ( a /  r)e-"') 
where the argument of Qf in (8) is replaced by ( p 2 +  q2+ m2)/2pq.  For 1.1. = 0.92, 
a = 0.5236 and 100 mesh points which are distributed according to 

we obtain the energy eigenvalues listed in table 1 in comparison with the exact 
eigenvalues. Higher energy eigenvalues have been omitted. The eigenfunction of the 
ground state is plotted in figure 1, which is in good agreement with the exact Coulomb 
wavefunction in momentum space [3]. The more mesh points we use, the higher 
the accuracy of the eigenvalues and eigenfunctions we obtain. 

2.2. Linearly rising potential ( V = ar )  

First, let us solve this problem in coordinate space because the solution is not readily 
available in most textbooks. The Schrodinger equation of the linearly rising potential 
is 

h = l  

where U, is the radial wavefunction and 1 is the angular momentum quantum number. 
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Table 1. Coulomb energy levels ( p  = 0.92, a = 05236,100 mesh points). 

n 1 2 3 

E(col1ocation) -0.126 367 -0.032 991 -0.016 017 
E = -pa2/2n2 -0.126 112 -0.031 528 -0.014012 

Figure 1. Normalised ground-state Coulomb wavefunction in momentum space (0: colloca- 
tion solution, + : analytic solution). 

For 1 = 0, we have 

d2Uo/dr2+2p( E - ar) U,, = 0. 

Introducing a new variable 

z = (2pa)”’( r - E / a )  

equation (1 1) can then be transformed to 

d2 Uo/dZ2 - ZU, = 0. 

Solutions are pairs of linearly independent Airy functions given on p 446 of Abramowitz 
and Stegun [4]. They are 

Ai (2) Bi(Z) 

A i ( Z )  A i ( Z  exp(27ri/3)) 

Ai(Z)  A i ( Z  exp( - 2 ~ i / 3 ) ) .  

Now we must impose the boundary condition Uo(0) = 0 in order to obtain the energy 
eigenvalues. The energy eigenvalues are determined from the zeros of A i ( Z ) ,  i.e. 

E = - [ ~ / ( 2 p ~ ) ” ’ ] 2 ,  Ai (20) = 0. (14) 
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The first few zeros of A i ( Z )  (see [4], table 10.13, p 478) are 

-2.338 11 -9.022 65 
-4.087 95 -10.040 17 
-5.520 56 -11.008 52 
-6.786 71 -11.93601 
-7.944 13 -12.828 78. 

For CL = 0.92 and a = 0.182 63, the corresponding energy eigenvalues are 
0.614 20 2.370 152 
1.073 86 2.637 443 
1.450 19 2.891 818 
1.782 79 3.135 460 
2.086 84 3.369 981 . . . . 

Now let us solve this problem in momentum space by the collocation method. The 
potential kernel is 

~ ( p ,  q, x)  = - 8.rra/(p2 + q2 - 2pqx)’. (16) 
With 100 mesh points distributed according to 

pi =0.92 - i =  1, .  . . , 100 
(10:- i )  

the eigenvalues turn out to be totally nonsensical. They are 
1.093 32 
2.786 22 
4.771 47 
7.135 02 
9.995 08 

in complete disagreement with those listed in (15). The discrepancy is due to the fact 
that the kernel 

K ( p ,  4 )  = 2.rrpq dx S(X) V(P, 4, x)  

of the linear potential is not square integrable: 

lom dp lom dq IK(p, q ) I 2 < a .  

To overcome this difficulty, we regulate the linear potential as illustrated in figure 2. 
This amounts to levelling off the divergent potential after exceeding a certain distance. 
Many different regularisations had been tried but could not yield better results. This 
can be understood as follows. If we regulate the divergent potential by replacing it at 
large distances with a monotonic decreasing potential, a potential barrier is artificially 
created and the ‘tunnelling’ through the barrier would affect the energy eigenvalues 
and eigenfunctions at small distances. Such ‘tunnelling’ effects could be reduced to a 
minimum if the barrier is infinitely thick. The reglarisation in figure 2 satisfies this 
requirement and in fact yields the best results. The regularised potential kernel is 

+ b ( p 2  + q2 - 2 p q ~ ) ’ / ~  sin b(p2+ q2 - 2 p q ~ ) ” ~ I .  (18) 
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r 

Figure 2. Regularised linear potential 

Using the regularised kernel, the energy eigenvalues come out to agree with those 
obtained via differential equations. They are summarised in table 2. We have dropped 
those eigenvalues bigger than ab because they no longer correspond to the bound 
states of the regularised potential. By adjusting the value of the parameter b, we can 
have as many eigenvalues as we wish. We also note that the low lying eigenvalues are 
insensitive to the parameter b. 

Table 2. Energy eigenvalues of a regularised linear potential ( w  = 0.92, 4 = 0.182 63, I = 0, 
V, = 0, 100 mesh points). 

Solutions of 
b = 5  b = l O  b = 1 5  b = 20 equation ( IS)  

0.612 840 0.613 820 0.613 590 0.613 361 0.614 20 
1.073 464 1.073 190 1.072913 1.073 86 
1.449 486 1.449 486 1.449 175 1.450 19 
1.768 493 1.782 072 1.781 732 1.782 79 

2.086 100 2.085 743 2.086 84 
2.369 154 2.369 034 2.370 15 
2.630 881 2.636 308 2.637 44 

2.890 668 2.891 82 
3.134264 3.135 46 
3.368 180 3.369 98 
3.586 697 

In this example we have seen clearly the difference between solving ‘infrared 
divergent’ potential problems in coordinate space and in momentum space. In coordin- 
ate space we must impose boundary conditions to ensure the eigenfunctions are well 
behaved at the origin and at infinity. These boundary conditions have indeed forced 
us to quantise the energy. On the other hand, in momentum space, we do not have 
the freedom of imposing the boundary conditions on the integral equation. We must 
regulate the ‘infrared divergent’ potential as we have done in figure 2. This is equivalent 
to shifting the potential energy origin and then setting V = 0 for r > b. 

We also studied the higher angular momentum ( 1  # 0) states. The results are 
summarised in table 3. The energy levels of 1 > 0 are in good agreement with those 
obtained by using the large 1 asymptotic expansion [ 111. 
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Table 3. Energy eigenvalues of a regularised linear potential ( p  = 0.92, a = 0.182 63, 
b = 10.0, V, = 0.0, 100 mesh points). 

State Energy eigenvalue 
~ 

1s 
1P 
2 s  
1 D  
2P 
3s 
2D 
3P 
4 s  
3D 

0.613 820 
0.882 564 
1.073 464 
1.115 554 
1.282 658 
1.449 486 
1.478 212 
1.628 090 
1.768 493 
1.791 106 

2.3. Spherical harmonic oscillator ( V =  $kr2) 

The Schrodinger equation of the radial wavefunction of a spherical harmonic oscillator 
is 

For 1 = 0, the energy levels [ 5 ]  are 

E = ( 2 n  + + ) h w  w = ( k / p ) 1 ’ 2  n = 0 , 1 , 2  , . . . .  (19 )  

In momentum space, the regularised potential (figure 3 )  kernel is 

V ( p ,  q, x) = 4 ~ ~ k b ~ S ~ ( p - q ) + 4 . i r k l p - q ( - ~ { ( b * ( p - q l * - 3 )  sinlp-qlb 

+ 3 6 1 ~  - qicosip - qibi 

Ip - q1 = ( p 2 +  q 2  - 2 p q x ) ” * .  

where 

(20 )  

For p =0.92, k=0 .92  and b =5.0, we obtain the energy eigenvalues listed in table 4. 
They are in excellent agreement with the analytical formula (16 )  except the last one. 
Here we only get 11.3  . . . while the exact value is 11.50. This is because this eigenvalue 

r 

Figure 3. Potential energy of a regularised spherical harmonic oscillator. 
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Table 4. Energy eigenvalues of a spherical harmonic oscillator (/.I = 0.92, k = 0.92, b = 5.0, 
h = l ,  V,=O.O). 

100 mesh points 1.4946 3.4915 5.4890 7.4865 9.4756 11.3194 
150 mesh points 1.4976 3.4962 5.4951 7.4937 9.4836 11.3257 

is right at the top of the regulated potential well (ikb2 = 11.50), and the transmission of 
the wavefunction decreases the energy eigenvalue. In fact the situation was set up 
deliberately to see how well we can determine the eigenvalues when they are close to 
the top of the potential well. In table 2, for the case of the linearly rising potential, 
we also see that the energy eigenvalues close to the top of the regularised potential 
well are decreased due to the ‘leakage’ of the wavefunction. We also notice that the 
accuracy of the eigenvalues can be improved by increasing the number of mesh points 
(table 4). 

3. Quarkonium 

It is well known that the mass spectra of the quark-antiquark bound states can be 
fitted by many non-relativistic potential models [ 6 ] .  In this section, we investigate this 
bound-state problem in momentum space by the techniques developed in the last 
section. 

Although quantum chromodynamics (QCD) is the candidate theory for the strong 
interaction, so far nobody has succeeded in deriving the interaction potential energy 
between quark-antiquark from the underlying theory. Here we choose the Cornel1 
potential energy [7], which is a linear plus Coulomb potential 

V , ( r ) = - $ a / r + a r +  V, Vo is a constant. (21) 

Because of the infrared divergence, we must regulate the linearly rising potential as 

Figure 4. Come11 potential energy of quarkonium. 
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Figure S. Regularised potential energy of quarkonium. 

we have done in the last section. The regulated potential kernel is 

1 6 n  a 
V(P, 9, x )  = -- + ( 2 n ) 3 ( a b +  v , ) s ~ ( P - Q )  

3 ( P 2  + 9, - 2P9X) 

4 n a  + , [ 2  COS b ( p 2 + q 2 - 2 p q ~ ) 1 / 2 - 2  
( P 2  + q2 - 2P9X) 

+ b ( p 2 + q 2 - 2 p g ~ ) 1 / 2  sin b ( p 2 +  g 2 - 2 p g x ) 1 / 2 ] .  ( 2 2 )  

First, we study the charmonium (cC) system. Using the parameters m, = m E  = 1.84 GeV 
( p  = 0.92 GeV), a = 0.39, a = 0.182 63,  b = 10.0 and Vo = -0.842 GeV, we obtain the cE 
spectrum shown in table 5 .  The mass of the bound state was computed according to 

M = m, + m ,  + energy eigenvalue. 

Table 5. cC bound states ina regularised linear plus Coulomb potential. Parameters used 
are mc= 1.84GeV, u0=-0.842GeV, a=0.18263, (I =0.39 and b =  10.0. 

State Mass (MeV) Mass (MeV) in reference [8] 

1 s  
1P 
2s  
1D 
2P 
3 s  
2D 
3P 
4 s  
3D 
4P 
5 s  

3095 
3524 
3686 
3809 
3967 
4110 
4194 
4337 
4464 
4527 
4627 
4642 

3095 
3522 
3684 
3810 

41 10 
4190 

4460 

4790 
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Next we study the bottomium (b6) system. Using parameters mb= m6= 5.17 GeV 
( F  = 2.585 GeV), a = 0.39, a = 0.182 63, b = 10.0 and V, = -0.710 GeV, we obtain the 
b6 mass spectrum shown in table 6. 

The accuracy of the eigenfunctions can be tested by studying the leptonic decay 
width of these vector quarkonium states. To lowest order the leptonic width of the 
s-wave quarkonium states is given by the Van Royen-Weisskopf formula [8] 

where e4 = for CS: and -: for b6, M is the mass of the vector meson, a is the fine 
structure constant, C is the QCD correction factor and q ( 0 )  is the wavefunction at the 
origin in coordinate space. The q ( 0 )  can be calculated from the wavefunction in 
momentum space: 

However, the QCD correction factor C is difficult to calculate. However these QCD 
corrections cancel in the ratio T,+,-(ns)/T,+,-( 1s). These ratios are calculated and the 
results are listed in tables 7 and 8. Again we see almost no difference between our 
results and the Cornel1 results. 

Table 6. b6 bound states in a regularised linear plus Coulomb potential. Parameters used 
are mb=5.17GeV, Vo=-0.71 GeV, a=0.18263,  cr=0.39and b=10.0. 

State Mass(MeV) Mass (MeV) in reference [8] 

1s 
1P 
2s  
1D 
2P 
3 s  
2D 
3P 
4 s  
3D 
5s 
6 s  

9 460 
9 956 

10 051 
10 208 
10311 
10 396 
10 500 
10 594 
10 674 
10 753 
10916 
11 135 

9 460 
9 960 

10 050 
10 200 
10 310 
10 400 
10 500 
10 600 
10 670 
10 750 
10 920 
11 140 

Table 7. Leptonic decay widths of cE. Parameters used are m, = 1.84 GeV, V, = -0.842 GeV, 
a = 0.182 63, a = 0.39 and b = 10.0. 

Integral equation Differential equation [8] 

0.44 
0.3 1 
0.23 
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Table 8. Leptonic decay widths of b6. Parameters used are mb = 5.17 GeV, V, = -0.71 GeV, 
a = 0.182 63. CI = 0.39 and b = 10.0. 

Integral equation Differential equation [8] 

0.36 
0.25 
0.20 
0.18 
0.16 

4. Conclusion 

In this paper we have shown that the non-relativistic bound-state problem in momentum 
space can be solved numerically by the collocation method. In the case of a Coulomb 
potential, the ‘moving’ singularities of the kernel can be avoided by integrating the 
potential kernel numerically via Gaussian integration (equation ( 6 ) ) .  There are a lot 
of other methods [9] for handling this type of ‘moving’ singularity. In the case of 
infrared divergent potentials (e.g. linearly rising potential), we must regularise the 
kernel to make it square integrable. A simple regularisation is introduced in this paper 
which amounts to levelling off the divergent potential after a certain distance is exceeded 
(see figure 2). Physically this means that the force disappears after exceeding a certain 
distance. Using this regularisation, we obtain the eigenvalues and eigenfunctions, in 
excellent agreement with those obtained by solving the Schrodinger differential 
equation. The cases studied are the linearly rising potential, the simple harmonic 
oscillator and the Coulomb plus linearly rising potential. An extension of the present 
technique to the relativistic bound-state problems will be reported in a forthcoming 
paper [ 101. 
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